
Maximum of the Riemann Zeta Function
on a Short Interval of the Critical Line

LOUIS-PIERRE ARGUIN
Baruch College

Graduate Center, City University of New York

DAVID BELIUS
Institute of Mathematics, University of Zurich

PAUL BOURGADE
Courant Institute

MAKSYM RADZIWIŁŁ
McGill University

AND

KANNAN SOUNDARARAJAN
Stanford University

Abstract

We prove the leading order of a conjecture by Fyodorov, Hiary, and Keating
about the maximum of the Riemann zeta function on random intervals along the
critical line. More precisely, as T ! 1 for a set of t 2 ŒT; 2T � of measure
.1 � o.1//T , we have

max
jt�uj�1

log
ˇ̌
�
�
1
2 C iu

�ˇ̌
D .1C o.1// log logT:

© 2018 Wiley Periodicals, Inc.

1 Introduction
1.1 Maximum of the Riemann � Function on Large and Short Intervals

An important problem in number theory concerns the maximum size of the Rie-
mann zeta function on the critical line. The fundamental Lindelöf hypothesis [25]
asserts that for any " > 0 and as jt j ! 1 one has j�.1

2
C it /j D O.jt j"/. Among

the many arithmetic consequences of the Lindelöf hypothesis we highlight the ex-
istence of primes in all intervals Œx; x C x1=2C"� for all x large enough, and in
almost all intervals of the form Œx; x C x"�. The current best bound towards the
Lindelöf hypothesis states that j�.1

2
C i t/j � jt j13=84C" (see [8]). Chapter XIII

of [39] gives a more comprehensive account of the literature surrounding the Lin-
delöf hypothesis.
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In [26], Littlewood showed that a stronger form of the Lindelöf hypothesis fol-
lows from the Riemann hypothesis: namely, for some positive constant C > 0, and
for all large jt j,

(1.1)
ˇ̌̌̌
�

�
1

2
C it

�ˇ̌̌̌
D O

�
exp

�
C

log jt j
log log jt j

��
:

While the value of the constant C has been reduced over the years [10, 34, 38],
with [10] establishing that any C > .log 2/=2 is permissible, Littlewood’s bound
remains essentially the best that is known.

There has been more progress on lower bounds for the maximal size of the zeta
function. The first result is due to Titchmarsh (see theorem 8.12 of [39]), who
proved that for any ˛ < 1

2
and large enough T ,

max
t2Œ0;T �

ˇ̌̌̌
�

�
1

2
C it

�ˇ̌̌̌
� exp..logT /˛/:

This result was improved to

max
t2Œ0;T �

ˇ̌̌̌
�

�
1

2
C it

�ˇ̌̌̌
� exp

�
c

p
logT

p
log logT

�
in [28] under the Riemann hypothesis, and then made unconditional with improved
constant c in [4, 37]. A breakthrough was achieved in recent work by Bondarenko
and Seip [6], who showed that for any c < 1=

p
2,

(1.2) max
t2Œ0;T �

ˇ̌̌̌
�

�
1

2
C it

�ˇ̌̌̌
� exp

�
c

p
logT log log logT
p

log logT

�
:

There is a gulf between the known conditional upper bound (1.1) and the uncon-
ditional �-result (1.2), and the asymptotics of the maximal order remains unclear
and a matter of dispute. In [13], Farmer, Gonek, and Hughes conjectured that

max
t2Œ0;T �

log
ˇ̌̌̌
�

�
1

2
C it

�ˇ̌̌̌
�

q
1
2

logT log logT ;

but at the end of their paper they also point to dissenting views, advocating that
(1.1) is closer to the maximal size. Extensive numerical computations have been
recently carried out in [5]; however, the data regarding extreme values remains
inconclusive.

Motivated by the goal of understanding the maximum order of j�.1
2
C i t/j, Fy-

odorov, Hiary, and Keating [16,17] proposed the study of the maximum size of the
zeta function in randomly chosen intervals (on the critical line) of constant length.
They obtained a precise conjecture (supported by numerical data) for the distribu-
tion of this maximum over short intervals. Namely, if t is chosen uniformly from
ŒT; 2T �, then

(1.3) max
jt�uj�1

log
ˇ̌̌̌
�

�
1

2
C iu

�ˇ̌̌̌
D log logT � 3

4
log log logT CXT ;
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where the random variable XT converges weakly, as T ! 1, to an explicitly
given distribution. Here, for convenience, we have stated their conjecture for ran-
dom intervals of length 2, but a similar conjecture could be made for intervals of
any constant length. The main result of this paper is a proof of the leading-order
asymptotics in (1.3).

THEOREM 1.1. For any " > 0, as T !1 we have

1

T
meas

n
T � t � 2T W

.1 � "/ log logT < max
jt�uj�1

log
ˇ̌
�
�
1
2
C iu

�ˇ̌
< .1C "/ log logT

o
! 1:

While completing this work, we learned that Theorem 1.1 (as well as the ana-
logue for Im log �) was independently proved by Najnudel [30] under the assump-
tion of the Riemann hypothesis. It would be interesting to establish the result for
Im log � unconditionally, perhaps by a modification of the approach given here.

1.2 Extrema of Log-Correlated Fields
Fyodorov, Hiary, and Keating’s conjecture was motivated by a connection with

random matrices. This analogy has been the subject of many investigations, be-
ginning with Montgomery’s pair correlation conjecture [27], and leading more re-
cently to the Keating-Snaith conjectures about the moments of the Riemann zeta
function [22]. While the pair correlation conjecture examines this analogy on the
“microscopic” scale of the average spacing between consecutive zeros (which is
1= logT at height T ), the prediction (1.3) relies on the analogy at a larger “meso-
scopic” scale (intermediate between 1= logT and the “macroscopic” scale of size
1).

To give a sense of this, we recall the fundamental result of Selberg [36] that
if t is sampled uniformly at random from ŒT; 2T �, then log j�.1

2
C it /j is normally

distributed with mean � 0 and variance � 1
2

log logT . His central limit theorem
has been extended to study the correlation between values of the zeta function at
nearby points in [7]: for example, if t is uniform on ŒT; 2T � and 0 < h < 1, then
the covariance between log j�.1

2
C it /j and log j�.1

2
C i.t C h//j is

(1.4)
1

2
log min.h�1; logT /:

Here the comparison of h�1 and logT is natural since 1= logT is (as mentioned
above) the scale of the typical spacing between zeros of �.s/.

A parallel story holds for the logarithm of the characteristic polynomial ofN�N
Haar-distributed unitary matrices, log jPN .´/j. On the unit circle j´j D 1, the
distribution of log jPN .´/j is asymptotically Gaussian with mean 0 and variance
�

1
2

logN [22]. Moreover, for two points ´1 and ´2 on the unit circle within
distance j´1 � ´2j D h, the covariance between log jPN .´1/j and log jPN .´2/j is
roughly 1

2
log min.h�1; N /, analogously to (1.4) (see [7]). Fyodorov, Hiary, and
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Keating gave a very precise conjecture for the maximum of flog jPN .´/j; j´j D 1g
by relying on the replica method and techniques from statistical mechanics predict-
ing extreme values in disordered systems [14, 15, 18]. Assuming that the structure
of the logarithmic covariance governs the distribution of the extreme values of
log jPN .´/j, they were led to conjecture the asymptotics (1.3).

The above Fyodorov-Hiary-Keating picture of extreme value theory has recently
been proved in a variety of cases. For a probabilistic model of the Riemann zeta
function the leading order of the maximum on short intervals was obtained in [20],
and the second order in [3]. For the characteristic polynomial of random unitary
matrices, the asymptotics of the maximum at first order [2] and then second or-
der [31] are known, together with tightness of the third order [11] in the more
general context of circular beta ensembles. In the context of Hermitian invariant
ensembles, the first order of the maximum of the characteristic polynomial was
proved in [24] and precise conjectures can be found in [19]. Theorem 1.1 and its
conditional analogue in [30] are the first results about the maxima of � itself, with
the only source of randomness being the choice of the interval. In connection with
the prediction from [16, 17] that log j�j behaves like a real log-correlated random
field, we note that [35] recently proved that � converges to a complex Gaussian
multiplicative chaos.

To summarize this discussion of related work, we note that our work builds
on, and adds to, the efforts to develop extreme value theory of correlated systems.
Such statistics are expected to lie on the same universality class for any covariance
of type (1.4). This class includes the two-dimensional Gaussian free field, branch-
ing random walks, cover times of random walks, Gaussian multiplicative chaos,
random matrices, and the Riemann zeta function. We do not give here a list of the
many rigorous works on this topic in recent years, pointing instead to [1, 23] and
the references therein.

1.3 About the Proof
Theorem 1.1 asserts two statements: first an upper bound that for typical t 2

ŒT; 2T � one has maxjt�uj�1 log j�.1
2
C iu/j � .1 C "/ log logT , and second a

lower bound that this maximum is also typically � .1 � "/ log logT . The upper
bound in Theorem 1.1 admits a short proof based on a Sobolev-type inequality and
classical second-moment estimates for �.s/ and �0.s/. This argument is given in
Section 2, and indeed in Proposition 2.1 we establish the stronger assertion that for
any function V D V.T / tending to infinity with T , we have

1

T
meas

n
max
jt�uj�1

log
ˇ̌
�
�
1
2
C iu

�ˇ̌
< log.V logT /

o
! 1:

This result is also obtained unconditionally in [30] by a different argument.
The lower bound in Theorem 1.1 requires substantially more work and forms

the bulk of the paper. In Section 3, we reduce the proof of Theorem 1.1 to two
propositions. The first step, Proposition 3.1, transforms the problem to the study
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of Dirichlet polynomials supported on the primes below X D exp..logT /1��/ for
a suitable � D �."/ > 0. This reduction step, carried out in Section 4, builds upon
ideas from [33], which gave an alternative approach to Selberg’s central limit theo-
rem for log j�.1

2
C it /j. The second step, Proposition 3.2, applies techniques from

the theory of branching random walks to establish lower bounds for the Dirich-
let polynomials over primes, adapting the approach of [2, 3]. This argument is
presented in Section 5. There is some scope to refine our results by letting the pa-
rameter � tend to 0 (or equivalently the parameter K that will arise later to tend to
infinity), but we have not attempted to carry this out.

In broad strokes, the proof of Proposition 3.1 splits into three steps. First we
show (Lemma 4.1) that a large value of �.s/ slightly to the right of the critical line
(that is, on the line Re.s/ D �0 for a suitable �0 > 1

2
) typically propagates to give

a large value on the critical line. In the second step, we construct a finite Dirichlet
polynomial M.s/ such that for most t 2 ŒT; 2T � and all u with jt � uj � 1 one
has �.�0 C iu/M.�0 C iu/ � 1, with �0 being taken slightly to the right of the
half-line (Lemmas 4.2 and 4.3). Note that such a construction is not possible if
�0 D

1
2

because of the preponderance of zeros of �.s/ on the line � D 1
2

. We
call such an M.s/ a mollifier. Our mollifier M.s/ is constructed in a specific way
that allows us in our third step to show that for almost all t 2 ŒT; 2T � we have
M.�0 C iu/ �

Q
p�X .1 � p

��0�iu/ for all ju � t j � 1, with X substantially
smaller than T . Assembling together the three steps shows that for almost all
t 2 ŒT; 2T � a large value of maxjt�uj�1 Re

P
p�X p

��0�iu leads to a large value
of maxjt�uj�1 log j�.1

2
C iu/j.

We now describe the ideas behind the proof of Proposition 3.2, where the goal is
to show that for almost all t 2 ŒT; 2T � we have maxjt�uj�1 Re

P
p�X p

��0�iu >

.1 � "/ log logT . The sketch below is a simplified account of the argument in
Section 5, and the reader should be aware of minor discrepancies in notation. Here
X D exp..logT /1�1=K/ for a fixed large integer K D K."/, and we split the
interval Œ2; X� into K � 1 disjoint intervals Jj (with 0 � j � K � 2) setting
Jj D .exp..logT /j=K/; exp..logT /.jC1/=K/�. Correspondingly, we decompose
Re
P
p�X p

��0�iu as
PK�2
jD0 Pj .u/, where the Dirichlet polynomial Pj includes

the primes from the interval Jj . The intervals Jj have been chosen so that for a
random t uniformly distributed in ŒT; 2T �:

� For 0 � j � K � 3, the terms Pj .t/ have comparable variance, precisely
var.Pj .t// D 1

2K
.1C o.1// log logT .

� If j ¤ k then Pj .t C �/ and Pk.t C � 0/ are asymptotically independent
for all fixed �; � 0 2 Œ0; 1�.
� For every j and fixed �; � 0 2 Œ0; 1�,

(1.5) cov.Pj .t C �/; Pj .t C � 0// �(
1
2K

log logT if � logj� � � 0j � jC1
K

log logT;
o.log logT / if � logj� � � 0j � j

K
log logT:
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The terms PK�2.t/ (which have a slightly different variance from the other
terms) and P0.t/ (which correlates along fairly long intervals) are special, and
it is convenient to discard them. This is already anticipated in the statement of
Proposition 3.1. The next step is to show that for almost all t 2 ŒT; 2T � there exists
u with ju � t j � 1

4
and such that Pj .u/ � 1�"

K
log logT for all 1 � j � K � 3.

The Dirichlet polynomials Pj .t/ typically do not vary much along intervals of
length 1= logT , and so one must show that for almost all t 2 ŒT; 2T � there exists
0 � k < logT with Pj .t C k= logT / � 1�"

K
log logT for all 1 � j � K � 3.

Letting T .k= logT / denote the event “Pj .t Ck= logT / > 1�"
K

log logT holds for
all 1 � j � K � 3,” an application of the Cauchy-Schwarz inequality gives

P
� [
0�k<logT

T .k= logT /
�
�

�P
0�k<logT P .T .k= logT //

�2P
0�k;`<logT P .T .k= logT / \ T .`= logT //

:

To evaluate the probabilities arising above, we perform a precise analysis in
the large-deviation regime of the joint distributions of Pj .t C k= logT / and of
Pj .t C `= logT /. The analysis shows that this joint distribution matches that of
Gaussian random variables with the covariance structure laid out in (1.5). If k and
` are such that jk� `j > .logT /1�1=.2K/, then for all 1 � j � K�3 the Dirichlet
polynomials Pj .t Ck= logT / and Pj .kC `= logT / behave independently, so that
(see Proposition 5.5)

P .T .k= logT / \ T .`= logT // � P .T .k= logT //P .T .`= logT //:

Therefore,X
0�k;`�logT

jk�`j>.logT /1�1=.2K/

P .T .k= logT / \ T .`= logT // �

.1C o.1//
� X
0�k<logT

P .T .k= logT //
�2
:

This case represents the typical situation when k and ` range from 0 to logT .
In the atypical case when k and ` are near each other, the Dirichlet polynomials
Pj .t C k= logT / and Pj .t C `= logT / will correlate for small values of j and
behave independently for larger values (see (1.5) and Proposition 5.4). It follows
that X

0�k;`<logT
jk�`j�.logT /1�1=.2K/

P .T .k= logT / \ T .`= logT // D

o
�� X

0�k<logT

P .T .k= logT //
�2�

;

and the desired Proposition 3.2 follows.
The approximate correlation behavior of Dirichlet polynomials Pj .tCk= logT /

and Pj .tC `= logT / has an underlying tree structure similar to that of a branching
random walk. Indeed, an accurate model for Pj .t C k= logT / can be obtained by
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FIGURE 1.1. Illustration of the branching random walk approximation
of the Dirichlet polynomials

PK�2
jD0 Pj . For two given �; � 0 2 Œ�1; 1�,

the increments Pj are approximately independent for j > j ? and al-
most identitical for j < j ? where j ? D K

� log j��� 0j
log logT . For the modelPK�2

jD0
xPj this dichotomy holds exactly.

considering Gaussian random variables xPj .k= logT / indexed by logT equidistant
points k= logT on Œ0; 1� and with a dependence structure that we now describe. The
points k= logT are identified with the leaves of a rooted tree withK�1 generations
indexed by j , with each vertex in a generation having approximately .logT /1=K

edges. One places independent and identically distributed copies of a Gaussian ran-
dom variableGj with mean 0 and variance .1=2K/ log logT at each edge in gener-
ation j . Given j and a leaf k= logT , the random variable xPj .k= logT / is set to be
equal to the random variableGj that is placed on the path from k= logT to the root
of the tree. Thus given a j and two distinct leaves k= logT and `= logT , the ran-
dom variables xPj .k= logT / and xPj .`= logT / are equal if � log j.k� `/= logT j >
jC1
2K

log logT and independent if � log j.k � `/= logT j � j
2K

log logT , simi-
larly to (1.5). In fact, .

PK�2
kD0

xP .�/; � 2 Œ�1; 1�/ serves as a good model of
.
PK�2
kD0 P.t C �/; � 2 Œ�1; 1�/. This conceptual picture is explained in detail

in [2, 3] and illustrated in Figure 1.1.
Finally, we remark that the ideas involved in the proof of Proposition 3.2 come

from many sources. The idea of restricting to an initial subset B of ŒT; 2T � on
which an accurate understanding of the distribution ofPj .t/ can be obtained comes
from [32]. The identification of an approximate branching random walk structure
within the sum

P
p�X p

�s was used in [3] to study the extrema of a random model
of the zeta function, and in the subsequent works regarding the large values of
characteristic polynomials [2, 11, 24, 31] and of the zeta function [30]. The origi-
nal method for studying the extrema of branching processes that we adapt is due
to Bramson [9]. More precisely, we use Kistler’s robust K-level coarse graining
variant from [23], as [2] did for the related random matrix problem.
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Notation. For the rest of the paper, t will denote a uniform random variable
on ŒT; 2T �. Accordingly, for any event AT � ŒT; 2T � and a random variable XT W
ŒT; 2T �! C we write

P .AT / D
1

T
meas.AT / and EŒXT � D

1

T

Z 2T

T

XT .t/dt:

We also use the standard O and o notations from analytic number theory: thus,
f .T / D O.g.T // means that jf .T /j=jg.T /j is bounded and f .T / D o.g.T //
if jf .T /j=jg.T /j ! 0. Sometimes it will be convenient to use the notation
f .T / � g.T /, which means the same as f .T / D O.g.T //. We will encounter
some arithmetical functions familiar in number theory. These include: !.n/ (which
counts the number of distinct primes dividing n), �.n/ (which counts with multi-
plicity the number of primes dividing n), the von Mangoldt function ƒ.n/ (which
equals logp if n is a power of the prime p, and equals 0 otherwise), and the Möbius
function �.n/ (which equals 0 if n is divisible by the square of a prime, and when
n is square-free it equals .�1/!.n/).

2 Proof of the Upper Bound
The upper bound implicit in our theorem will be a simple consequence of esti-
mates for the second moment of the zeta function and its derivative, together with
a Sobolev-type inequality. We begin with the Sobolev inequality, which will also
be used elsewhere in the proof.

Suppose f (possibly complex valued) is continuously differentiable on Œ�1; 1�.
For any u 2 Œ�1; 1�, note that

f .u/2 D
f .1/2 C f .�1/2

2
C

Z u

�1

f 0.v/f .v/dv �
Z 1

u

f 0.v/f .v/dv;

so that using the triangle inequality

(2.1) max
u2Œ�1;1�

jf .u/j2 �
jf .1/j2 C jf .�1/j2

2
C

Z 1

�1

jf 0.v/f .v/jdv:

PROPOSITION 2.1. Let V D V.T / be any function tending to infinity as T !1.
Then

P
�

max
jt�uj�1

j�.1
2
C iu/j > V logT

�
D O.1=V 2/ D o.1/;

where we recall that t is sampled uniformly in the range ŒT; 2T �.

PROOF. Chebyshev’s inequality implies that

(2.2) P
�

max
jt�uj�1

j�.1
2
C iu/j > V logT

�
�

1

V 2.logT /2
E
�

max
jt�uj�1

j�.1
2
C iu/j2

�
:
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Applying (2.1) with f .v/ D �.1
2
C it C iv/, we obtain

max
jt�uj�1

j�.1
2
C iu/j2 � j�.1

2
C i.t C 1//j2 C j�.1

2
C i.t � 1//j2

C

Z 1

�1

j�0.1
2
C i.t C v//�.1

2
C i.t C v//jdv;

so that

E
�

max
jt�uj�1

j�.1
2
C iu/j2

�
�

1

T

Z 2TC1

T�1

�
j�.1

2
C it /j2 C j�0.1

2
C it /�.1

2
C it /j

�
dt:

Asymptotics for the second moment of the zeta function and its derivatives are
well-known (see chapter VII of [39] and, in the case of the derivative, [12]), and
these imply the bounds

(2.3)

Z 2TC1

T�1

j�.1
2
C it /j2dt � T logT andZ 2TC1

T�1

j�0.1
2
C it /j2dt � T .logT /3:

Using these estimates and the Cauchy-Schwarz inequality, we conclude that

E
�

max
jt�uj�1

j�.1
2
C iu/j2

�
� .logT /2;

which, in view of (2.2), yields the proposition. �

3 Plan of the Proof of the Lower Bound
The lower bound of Theorem 1.1 will be proved in two main steps. First, it is

shown that the maximum on a short interval of log j�j is close to the maximum
of a Dirichlet polynomial supported on primes slightly to the right of the critical
line. This is the content of Proposition 3.1, whose proof builds upon some ideas
from [33]. Second, a lower bound for the maximum of these Dirichlet polynomials
on an interval is proved using the robust approach of [23] in Proposition 3.2.

The following notation will be used throughout the remainder of the paper. Mo-
tivated by [23], we will fix a large integer K D K."/ and divide the primes below

(3.1) X D exp..logT /1�
1
K /

into K � 1 ranges depending on their size as follows. For 1 � j � K � 2 set

(3.2) Jj D .exp..logT /
j
K /; exp..logT /

jC1
K /�;

and take J0 D Œ2; exp..logT /1=K/�. For each 0 � j � K � 2, we define the
Dirichlet polynomial

(3.3) Pj .u/ D Re
X
p2Jj

1

p�0Ciu ;
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where

(3.4) �0 D
1

2
C
.logT /

3
2K

logT
:

In the course of the proof, we shall see that if u is chosen uniformly from ŒT; 2T �,
then Pj .u/ asymptotically has a Gaussian distribution with mean 0 and variance
�

1
2

P
p2Jj

1=p2�0 ; see, for example, Lemma 3.4. The prime number theorem
enables us to evaluate this variance asymptotically, and we record the relevant es-
timates for future use. Thus, using the prime number theorem (see, for example,
theorem 6.9 of [29]) and partial summation it follows that for some constant c > 0
and any � D 1

2
C ı with ı > 0,X
x�p�y

1

p2�
D

Z y

x

1

u2� logu
duC O.e�c

p
logx/

D log
logy
log x

C O.ı logy C e�c
p

logx/:

(3.5)

Since .�0� 1
2
/� log.supJK�3/ D .logT /�1=.2K/, it follows that, for all 0 � j �

K � 3,

(3.6)
X
p2Jj

1

p2�0
D

1

K
log logT C O..logT /�

1
2K /;

so that the Dirichlet polynomials Pj .u/ all have roughly the same variance. The
last Dirichlet polynomial PK�2.u/ has a slightly different variance, with the cor-
responding sum in (3.6) being roughly 1

2K
log logT .

We are now ready to state the two main propositions from which the lower bound
in the theorem will follow.

PROPOSITION 3.1. Let " > 0 be given, and let K D K."/ be a suitably large
integer. Then

P
�

max
jt�uj�1

log j�.1
2
C iu/j > .1 � 2"/ log logT

�
�

P

�
max
jt�uj� 1

4

K�3X
jD1

Pj .u/ > .1 � "/ log logT
�
C o.1/:

Note that in Proposition 3.1 we omitted the first and last terms, P0.u/ and
PK�2.u/. The term PK�2 is omitted in view of its slightly different variance.
The very small primes occurring in P0 are omitted so that the Dirichlet sums are
not too correlated, a fact essential to the analysis in Section 5.

PROPOSITION 3.2. Let K > 3 be a natural number, and 0 < � < 1 be a real
number. Then

(3.7) P

�
max
jt�uj� 1

4

�
min

1�j�K�3
Pj .u/

�
>
�

K
log logT

�
D 1C o.1/:
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PROOF OF THEOREM 1.1. If the event of Proposition 3.2 holds, then

max
ju�t j� 1

4

K�3X
jD1

Pj .u/ > �

�
1 �

3

K

�
log logT:

Taking � sufficiently close to 1 andK large enough, the lower bound of the theorem
now follows from Proposition 3.1. �

Before proceeding to the proofs of the proposition, we record some simple re-
sults on mean values of Dirichlet polynomials, which will be repeatedly used be-
low.

LEMMA 3.3. For any complex numbers a.n/ and b.n/, and N � T we haveZ 2T

T

� X
m�N

a.m/m�it
�� X

n�N

b.n/nit
�

dt D

T
X
n�N

a.n/b.n/C O
�
N logN

X
n�N

.ja.n/j2 C jb.n/j2/
�
:

PROOF. Expanding out and performing the integral givesX
m;n�N

a.m/b.n/

Z 2T

T

�
n

m

�it

dt D

T
X
n�N

a.n/b.n/C O
� X
m¤n�N

ja.m/b.n/j

j log.m=n/j

�
:

Using ja.m/b.n/j � ja.m/j2 C jb.n/j2, the remainder term above is

�

X
m�N

ja.m/j2
X
n�N
n¤m

1

jlog.m=n/j
C

X
n�N

jb.n/j2
X
m�N
m¤n

1

jlog.m=n/j

� N logN
X
n�N

.ja.n/j2 C b.n/2/;

proving the lemma. �

The next two lemmas are also standard (for example, see proposition 3.1 of
[7] or lemma 3 of [38]) and will be useful in comparing moments of Dirichlet
polynomials over the primes with the moments of suitable Gaussian distributions.

LEMMA 3.4. Let x � 2 be a real number, and suppose that for primes p � x,
a.p/ and b.p/ are complex numbers with ja.p/j and jb.p/j both at most 1. Then
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for any natural number k we have

E

��
1

2

X
p�x

.a.p/p�it
C b.p/pit /

�k�
D @k´

� Y
p�x

I0.
p
a.p/b.p/´/

�ˇ̌̌̌
´D0

C O
�
x2k

T

�
where I0.´/ D

P
n�0 ´

2n=.22n.nŠ/2/ denotes the Bessel function. In particular,
the expression is O.x2k=T / for odd k.

PROOF. Given n with prime factorization n D p
˛1
1 � � �p

˛r
r , we set a.n/ DQ

j a.pj /
j̨ and b.n/ D

Q
j b.pj /

j̨ with the understanding that a.n/ and b.n/ are
0 if n has a prime factor larger than x. We also define temporarily the multiplica-
tive function g given by g.p˛/ D 1=˛Š on prime powers p˛. With this notation,
we may expand (recall �.n/ counts with multiplicity the number of prime factors
of n)�

1

2

X
p�x

.a.p/p�it
C b.p/pit /

�k
D

1

2k

kX
`D0

�
k

`

��
`Š

X
�.m/D`

a.m/g.m/m�it
��
.k � `/Š

X
�.n/Dk�`

b.n/g.n/nit
�
:

Now we appeal to Lemma 3.3 to evaluate the expectation of the above quantity.
The remainder terms that arise are

�
xk log.xk/

T

1

2k

kX
`D0

�
k

`

�
.�.x/` C �.x/k�`/�

x2k

T
;

where �.x/ � x= log x denotes the number of primes below x.
Now let us consider the main terms arising from Lemma 3.3. These arise from

the diagonal terms m D n, so that ` D �.m/ D k � ` D �.n/. Thus when k is
odd there is no main term, and when k is even, we get a main term contribution of

1

2k
kŠ

X
�.n/Dk=2

a.n/b.n/g.n/2:

This is kŠ times the coefficient of ´k inX
n

a.n/b.n/g.n/2.´2=4/�.n/ D
Y
p�x

I0.
p
a.p/b.p/´/;

since the terms appearing on the left side are multiplicative. �

The last lemma gives a useful bound for the 2kth moment of Dirichlet polyno-
mials supported on primes; it may be deduced by a variant of our argument for the
previous lemma, or see lemma 3 of [38].



512 L.-P. ARGUIN ET AL.

LEMMA 3.5. Let x � 2 be a real number, and suppose � � 1
2

. Let k be a natural
number such that xk � T .logT /�1. Then, for any sequence of complex numbers
a.p/ defined on the primes p below x,

1

T

Z 2T

T

ˇ̌̌̌ X
p�x

a.p/

p�Cit

ˇ̌̌̌2k
dt � kŠ

�X
p�x

ja.p/j2

p2�

�k
:

4 Proof of Proposition 3.1
Step 1. We divide the proof of the proposition into three parts, the first of which

bounds the maximum of the zeta function over intervals of the critical line in terms
of the maximum over intervals lying slightly to the right of the critical line.

LEMMA 4.1. Let " > 0 be given, and suppose 1
2
� � � 1

2
C .logT /�1=2�". Then,

for any real number V � 2,

P
�

max
jt�uj�1

j�.1=2C iu/j > V
�
� P

�
max
jt�uj� 1

4

j�.� C iu/j > 2V
�
C o.1/:

PROOF. From theorem 4.11 of [39] we recall that for � � 1
2

(4.1) �.� C it / D
X
n�T

1

n�Cit C O.T �
1
2 /:

Using knowledge of the Fourier transform of the function e�jxj, we may write
1

n��
1
2

D
1

�

Z 1
�1

n�iv
.� � 1=2/

.� � 1=2/2 C v2
dv

D
1

�

Z T=2

�T=2

n�iv
.� � 1=2/

.� � 1=2/2 C v2
dv CO.T �1/:

Thus we see that

(4.2) �.� C it / D
1

�

Z T=2

�T=2

�.1=2C i.t C v//
� � 1=2

.� � 1=2/2 C v2
dv CO.T �

1
2 /:

Consider t 2 ŒT; 2T � such that we have both max
jvj� 1

4
j�.� C i.t C v//j > 2V

and maxjvj<1 j�.12 C i.t C v//j � V ; we must show that the measure of the set
of such points t is o.T /. If t is such a point, then denote by v? D v?.t/ the
v 2 Œ�1

4
; 1
4
�, where the maximum of j�.� C i.t C v//j is attained. Applying (4.2)

to the point � C i.t C v?/, we obtain

2V < j�.� C i.t C v?//j

�
1

�

Z T=2

�T=2

ˇ̌̌̌
�

�
1

2
C i.t C v? C v/

�ˇ̌̌̌
.� � 1

2
/

.� � 1
2
/2 C v2

dv C O.T �
1
2 /:
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Since j�.1
2
C iu/j � V for jt � uj � 1 (by assumption), the portion of the integral

above with jvj � 3
4

is less than V . Therefore it follows that

V C O.T �
1
2 / �

1

�

Z
3
4
�jvj�T

2

ˇ̌̌̌
�

�
1

2
C i.t C v? C v/

�ˇ̌̌̌
.� � 1

2
/

.� � 1
2
/2 C v2

dv:

Using the Cauchy-Schwarz inequality, we deduce that for such t ,�
V

.� � 1
2
/

�2
�

�Z
3
4
�jvj�T

2

ˇ̌̌̌
�

�
1

2
C i.t C v? C v/

�ˇ̌̌̌
dv
v2

�2
�

Z
1
2
�jvj�T

2

ˇ̌̌̌
�

�
1

2
C i.t C v/

�ˇ̌̌̌2 dv
v2
:

Therefore, by Chebyshev’s inequality, the measure of the set of such points t 2
ŒT; 2T � is

�

�
.� � 1=2/

V

�2 Z 2T

T

Z
1
2
�jvj�T

2

ˇ̌̌̌
�

�
1

2
C i.t C v/

�ˇ̌̌̌2 dv
v2

dt

�

��
� � 1

2

�
V

�2 Z 5T=2

T=2

ˇ̌̌̌
�

�
1

2
C it

�ˇ̌̌̌2
dt;

which, by (2.3) and the assumption on � , is

�

�
� �

1

2

�2
T logT D o.T /:

This concludes the proof. �

Step 2. The second part of the attack will consist of showing that on the �0 line,
one can typically invert �.�0Ci t/ and replace it by a suitable Dirichlet polynomial.
We define

(4.3) M.s/ D
X
n

�.n/a.n/

ns
;

where the factor a.n/ equals 1 if all prime factors of n are smaller than X and
�.n/ � 100K log logT DW �, and a.n/ D 0 otherwise. Recall that � denotes the
Möbius function,�.n/ counts the number of prime factors of n (with multiplicity),
andX was defined in (3.1). The choice of the Dirichlet polynomialM is motivated
by work in [33], which in turn is motivated by classical ideas on mollifying the
zeta function. Adapting the proof of proposition 3 in [33], we first establish the
following preliminary result.

LEMMA 4.2. With the above notationZ 2T

T

j�.�0 C it /M.�0 C it / � 1j2 dt D O
�

T

.logT /100

�
:
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PROOF. From its definition, a.n/ D 0 unless n � X� < T " (" > 0 is a fixed
arbitrarily small constant), and therefore estimating trivially one hasM.�0Cit /�
T ". Combining this with (4.1), we see thatZ 2T

T

�.�0C it /M.�0C it /dt D
Z 2T

T

X
n�T

1

n�0Cit

X
m

�.m/a.m/

m�0Cit dt CO.T
1
2
C"/:

Carrying out the integral over t , this is

T C O
� X
n�T;m�X� ;
mn>1

1

.mn/�0

�
C O.T

1
2
C"/ D T C O.T

1
2
C"/:

Thus, expanding out the square in the desired integral, we see that it equals

(4.4)
Z 2T

T

j�.�0 C it /M.�0 C it /j2 dt � T C O.T
1
2
C"/:

To estimate the second moment in (4.4), we invoke lemma 4 from [33]: for any
h; k � T and 1

2
< � � 1, we have

(4.5)
Z 2T

T

�
h

k

�it

j�.� C it /j2 dt DZ 2T

T

�
�.2�/

�
.h; k/2

hk

��
C

�
t

2�

�1�2�
�.2 � 2�/

�
.h; k/2

hk

�1���
dt

C O.T 1��C" min.h; k//:

Using this result, we may write

(4.6)

Z 2T

T

j�.�0 C it /M.�0 C it /j2 dt

D

X
h;k

�.h/a.h/�.k/a.k/

h�0k�0

Z 2T

T

�
h

k

�it

j�.�0 C it /j2 dt

D S1 C S2 CE;

say, with

S1 D T �.2�0/
X
h;k

�.h/a.h/�.k/a.k/

.hk/�0

�
.h; k/2

hk

��0
;(4.7)

S2 D �.2 � 2�0/

�Z 2T

T

�
t

2�

�1�2�0
dt
�

(4.8)

�

X
h;k

�.h/a.h/�.k/a.k/

.hk/�0

�
.h; k/2

hk

�1��0
;
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and

(4.9) E D O
�
T
1
2
C"

X
h;k�T "

1

.hk/�0
min.h; k/

�
D O.T

1
2
C"/:

Now consider the quantity S1. Here the sum is over all h and k whose prime
factors are below X , and with �.h/ and �.k/ below �. If we retain the first con-
dition but drop the second, then the contribution to S1 would be (upon considering
whether a prime p divides neither h nor k, or divides exactly one of h or k, or
divides both h and k)

(4.10)

T �.2�0/
X
h;k;

pjhk H) p�X

�.h/�.k/

.hk/�0

�
.h; k/2

hk

��0

D T �.2�0/
Y
p�X

�
1 �

1

p2�0
�

1

p2�0
C

1

p2�0

�

D T �.2�0/
Y
p�X

�
1 �

1

p2�0

�
:

The difference between S1 and (4.10) comes from the terms with either �.h/ or
�.k/ being larger than �, and these terms give a contribution bounded by (assum-
ing that �.h/ is larger than �)

� T �.2�0/
X
h;k

�.h/>�
pjhk H) p�X

j�.h/�.k/j

.hk/�0

�
.h; k/2

hk

��0

� T �.2�0/e
��

X
h;k

pjhk H) p�X

j�.h/�.k/j

.hk/�0

�
.h; k/2

hk

��0
e�.h/;

since e�.h/�� � 1 when �.h/ � �, and is nonnegative for other terms. The sum
over h and k may now be expressed as a product over the primes belowX , yielding

T �.2�0/e
��

Y
p�X

�
1C

e

p2�0
C

1

p2�0
C

e

p2�0

�
�

T .logT /e��
Y
p�X

�
1C

7

p

�
�

T

.logT /100
:

Thus

S1 D T �.2�0/
Y
p�X

�
1 �

1

p2�0

�
CO

�
T

.logT /100

�



516 L.-P. ARGUIN ET AL.

D T
Y
p>X

�
1 �

1

p2�0

��1
C O

�
T

.logT /100

�
:

Recalling the definitions of �0 and X , we find .�0 � 1
2
/ logX D .logT /1=.2K/,

and so X
p>X

log
�
1 �

1

p2�0

��1
�

X
p>X

1

p2�0
� X�.�0�1=2/

X
p>X

1

p�0C1=2

� .logT /�100;

which enables us to conclude that S1 D T CO.T=.logT /100/.
Arguing similarly, we see that

S2 � �.2 � 2�0/

�Z 2T

T

�
t

2�

�1�2�0
dt
� Y
p�X

�
1 �

2

p
C

1

p2�0

�

� T 2�2�0 logT �
T

.logT /100
:

Inserting the evaluation of S1 with the estimates for S2 and E into (4.6), and then
into (4.4), we obtain the lemma. �

Lemma 4.2 ensures that for most t one has �.�0 C it /M.�0 C it / � 1, and we
next refine this to ensure that for most t one has �.�0 C iu/M.�0 C iu/ � 1 for
all u with ju � t j � 1.

LEMMA 4.3. For any " > 0, we have

P
�

max
jt�uj�1

jM.�0 C iu/�.�0 C iu/ � 1j > "
�
D o.1/:

PROOF. We deduce this from Lemma 4.2 and a Sobolev inequality argument.
Note that by (2.1), we have

max
jt�uj�1

j�M.�0 C iu/ � 1j2

� j�M.�0 C i.t C 1// � 1j2 C j�M.�0 C i.t � 1// � 1j2

C

Z tC1

t�1

j�M.�0 C iv/ � 1jj.�0M C �M 0/.�0 C iv/jdv:

Ignoring the end cases t 2 ŒT; TC1� or t 2 Œ2T�1; 2T �, by Chebyshev’s inequality
the probability we want to bound is (using the above estimate)

�
1

T
C

1

"2T

Z 2T

T

�
j�M.�0 C i.t C 1// � 1j2

C j�M.�0 C it / � 1jj.�0M C �M 0/.�0 C it /j
�
dt:
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Applying the Cauchy-Schwarz inequality and Lemma 4.2 this is

�
1

"2.logT /100
C

1

"2.logT /50

�
1

T

Z 2T

T

.j�0M j2 C j�M 0j2/.�0 C it /dt
� 1
2

:

We can bound the last integral above by adapting the argument in [33], as we did in
the proof of Lemma 4.2. Or, we can finesse the issue by using the Cauchy-Schwarz
inequality once again to bound that term by

�

�
1

T

Z 2T

T

.j�j4 C j�0j4/.�0 C it /dt
� 1
4
�
1

T

Z 2T

T

.jM j4 C jM 0j4/.�0 C it /dt
� 1
4

;

and then use the work of Conrey [12]1 to bound the first factor by� .logT /2, and
apply Lemma 3.3 to bound the second term by � .logT /2. This completes the
proof, with a lot of room to spare. �

Step 3. The last stage in our proof involves connecting log jM.�0 C it /j (for
most t ) with (close relatives) of the Dirichlet polynomials over primes Pj .t/. For
0 � j � K � 2, define the Dirichlet polynomials

(4.11) Pj .t/ D
X
n2Jj

ƒ.n/

n�0Cit logn
and zPj .t/ D

X
p2Jj

1

p�0Cit :

Note that Pj .t/ is simply the real part of zPj .t/, and the difference between Pj
and zPj is only in the prime powers; estimating the contribution of prime cubes and
larger powers trivially we see that

(4.12) Q.t/ D

K�2X
jD0

.Pj .t/ � zPj .t// D
1

2

X
p�
p
X

1

p2�0C2it C O.1/:

Our goal is to show that, for most t ,

max
jt�uj�1

ˇ̌̌̌
M.�0 C iu/ � exp

�
�

K�2X
jD0

Pj .u/
�ˇ̌̌̌

is small, and we begin with the following preliminary lemma:

LEMMA 4.4. With notation as above,

P
�

max
jt�uj�1

jQ.u/j � log log logT
�
D o.1/

and
P
�

max
jt�uj�1

max
0�j�K�2

j zPj .u/j � 10K
� 1
2 log logT

�
D o.1/:

1 To be precise, the work [12] gives an asymptotic for the fourth moment of �0 on the critical line
(the fourth moment for � itself is a classical result of Ingham [21]), but this implies the same bound
on the �0 line as well.
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PROOF. The Sobolev inequality (2.1) gives

max
jt�uj�1

jQ.u/j2 � jQ.t C 1/j2 C jQ.t � 1/j2 C

Z 1

�1

jQ.t C v/Q0.t C v/jdv;

so that, using Chebyshev’s inequality and the Cauchy-Schwarz inequality,

.log log logT /2P
�

max
jt�uj�1

jQ.u/j � log log logT
�
�

1

T
C EŒjQ.t/j2�C .EŒjQ.t/j2�EŒjQ0.t/j2�/

1
2 :

A quick calculation with Lemma 3.3 shows that EŒjQ.t/j2� and EŒjQ0.t/j2� are
O.1/, which yields the first assertion of the lemma.

Let ` denote a natural number to be chosen later. Applying (2.1) to the function
zPj .t/

`, we obtain

max
jt�uj�1

j zPj .u/j
2`
� j zPj .t � 1/j

2`
C j zPj .t C 1/j

2`

C `

Z tC1

t�1

j zPj .v/j
2`�1
j zP 0j .v/jdv:

Combining this with Chebyshev’s inequality and the Cauchy-Schwarz inequality,
we may bound P .maxju�t j�1 j zPj .u/j � 10K�1=2 log logT / by

�
1

T
C .10K�

1
2 log logT /�2`

�
�
EŒj zPj .t/j

2`�C `
�
EŒj zPj .t/j

4`�2�EŒj zP 0j .t/j
2�
� 1
2
�
:

(4.13)

Now an application of Lemma 3.3 shows that

EŒj zP 0j .t/j
2��

X
p2Jj

.logp/2

p2�0
� .logT /2;

and an application of Lemma 3.5 gives

EŒj zPj .t/j
4`�2�� .2` � 1/Š

� X
p2Jj

1

p2�0

�2`�1
� .`K�1 log logT /2`�1:

Upon choosing ` D Œ10 log logT �, we conclude from this and (4.13) that

P
�

max
ju�t j�1

j zPj .u/j � 10 log logT
�
� .logT /

�
`K�1 log logT

100K�1.log logT /2

�`
� .logT /�10:

Using a union bound for each 0 � j � K � 2, we obtain a stronger form of the
claimed lemma. �
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We are ready to connect M.�0 C it / with exp.�
PK�3
jD0 Pj .t// for most values

of t .

LEMMA 4.5. We have

P

�
max
jt�uj�1

ˇ̌̌̌
M.�0 C iu/ � exp

�
�

K�2X
jD0

Pj .u/
�ˇ̌̌̌
> .logT /�2

�
D o.1/ :

PROOF. Recalling that � D 100K log logT , we define the truncated exponen-
tial

(4.14) M.t/ D
X
k��

.�1/k

kŠ

�K�2X
jD0

Pj .t/
�k
:

By Lemma 4.4, we know that with probability 1C o.1/ (in t ) one has

max
jt�uj�1

ˇ̌̌̌K�2X
jD0

Pj .u/
ˇ̌̌̌
� max
jt�uj�1

�
jQ.u/j C

K�2X
jD0

j zPj .u/j

�
� 10K log logT:

For such a typical t , one has

max
ju�t j�1

ˇ̌̌̌
M.u/ � exp

�
�

K�2X
jD0

Pj .u/
�ˇ̌̌̌
�

X
k>�

1

kŠ
.10K log logT /k

� .logT /�100:

Therefore, the lemma would follow once we establish that

(4.15) P
�

max
jt�uj�1

jM.�0 C iu/ �M.u/j > .logT /�3
�
D o.1/:

The quantities M.�0 C iu/ and M.u/ are almost identical, differing only in a
small number of terms. More precisely, if we write M.u/ D

P
n b.n/n

��0�iu,
then one may check that (i) jb.n/j � 1 always; (ii) b.n/ D 0 unless n � X� is
composed only of primes belowX ; and (iii) b.n/ D �.n/a.n/ unless�.n/ > �, or
if there is a prime p � X such that pkjn with pk > X . Therefore, an application
of Lemma 3.3 gives

EŒjM.�0 C it / �M.t/j2��
X

pjn H) p�X
�.n/>�

1

n
C

� X
p�X

pk>X

1

pk

�� X
pjn H) p�X

1

n

�
:

The second term above is� .logX/=
p
X � .logT /�100. Since e.�.n/��/=2 is

� 1 when �.n/ > � and is positive for all other n, we may bound the first term
above by

e��=2
X

pjn H) p�X

e�.n/=2

n
� .logT /�50K

Y
p�X

�
1C

1X
jD1

ej=2

pj

�
� .logT /�50:
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We conclude that

EŒjM.�0 C it / �M.t/j2�� .logT /�50:

A simple application of Lemma 3.3 also shows that EŒjM 0.�0 C it /j2� and
EŒjM0.t/j2� are� .logT /3. The estimate (4.15) follows as in Lemmas 4.4 and 4.5
by a successive application of the Sobolev inequality (2.1), Chebyshev’s inequality,
and the Cauchy-Schwarz inequality, proving the lemma. �

Finishing the Proof of Proposition 3.1
It is now simply a matter of assembling the results established above. From

Lemma 4.1 we obtain for any V � 2

P
�

max
jt�uj�1

j�.1
2
C iu/j � V

�
� P

�
max
jt�uj� 1

4

j�.�0 C iu/j � 2V
�
C o.1/:

By Lemma 4.3 this quantity is

� P
�

max
jt�uj� 1

4

jM.�0 C iu/j�1 � 4V
�
C o.1/;

and by Lemma 4.5 the above is

� P

�
max
jt�uj� 1

4

K�2X
jD0

Re Pj .u/ � log.8V /
�
C o.1/:

Invoking Lemma 4.4, we may replace RePj .u/ by Pj .u/ with negligible error,
and also discard the terms with j D 0 and j D K � 2. Thus, the quantity above is

� P

�
max
jt�uj� 1

4

K�3X
jD1

Pj .u/ � log.8V /C log log logT C 20K�
1
2 log logT

�
C o.1/:

Taking V D .logT /1�2", the proposition follows.

5 Proof of Proposition 3.2
The proof of the proposition is based on large-deviation estimates for Pj .u/ (de-
fined in (3.3) and (3.4)); see Propositions 5.4 and 5.5. In Section 5.1, we estimate
the Fourier-Laplace transform of Pj .u/ in a wide range, using Lemma 3.4 to eval-
uate moments of Dirichlet polynomials. The large-deviation estimates are then
derived by inverting the Fourier-Laplace transforms, in Section 5.2. The proof of
Proposition 3.2 is completed in Section 5.3.

5.1 Fourier-Laplace Transform of Dirichlet Polynomials
The first step is to show that the moments of sums of Pj ’s are very close to

Gaussian moments.

PROPOSITION 5.1. For 1 � j � K � 3 let �j and � 0j denote complex numbers
with j�j j, j� 0j j � .logT /1=.16K/. Let � denote a real number with j� j � 1. If
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n � .logT /1=.2K/ is odd, then

E

��K�3X
jD1

f�jPj .t/C �
0
jPj .t C �/g

�n�
D O.exp.�.logT /

1
3K //:

If n � .logT /1=.2K/ is even,

(5.1)

E

��K�3X
jD1

f�jPj .t/C �
0
jPj .t C �/g

�n�

D
nŠ

2n=2.n=2/Š

�K�3X
jD1

fs2j .�
2
j C �

02
j /C 2�j .�/�j �

0
j g

�n=2

C O.exp.�.logT /
1
3K //;

where

(5.2) s2j D
1

2

X
p2Jj

p�2�0 and �j .�/ D
1

2

X
p2Jj

p�2�0 cos.� logp/:

Ignoring the remainder term, the moments evaluated in (5.1) correspond exactly
with what would happen ifPj .t/ andPj .tC�/were jointly Gaussian with variance
s2j and covariance �j .�/, and with Pj .t/ and Pj .t C �/ being uncorrelated with
Pk.t/ and Pk.t C �/ when j ¤ k. Recall from (3.6) that the prime number
theorem gives (for 1 � j � K � 3)

(5.3) 2s2j D
log logT
K

C O..logT /�
1
2K /:

Moreover, by partial summation the prime number theorem also gives (for 1 �
j � K � 3)

(5.4) �j .�/ D

(
log logT
2K

C O.1/ if j� j � .logT /�
jC1
K ;

O.j� j�1.logT /�
j
K / if 1 � j� j � .logT /�

j
K :

In particular, we see that the polynomials decorrelate for j � 1 if the distance �
is large enough. The term P0, however, remains correlated in a large range of � ,
and this is the reason for omitting it in Proposition 3.2. The range .logT /�j=K �
j� j � .logT /�.jC1/=K can also be handled using the prime number theorem, but
we do not require this, and will just use the trivial bound �s2j � �j .�/ � s

2
j here.

PROOF OF PROPOSITION 5.1. Write
K�3X
jD1

f�jPj .t/C �
0
jPj .t C �/g D

1

2

X
p

fa.p/p�it C a?.p/pitg;
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where, for primes p 2 Jj with 1 � j � K � 3, we set

a.p/ D .�j C �
0
jp
�i� /p��0 and a?.p/ D .�j C �

0
jp

i� /p��0 ;

and put a.p/ D a?.p/ D 0 for all other p. We now appeal to Lemma 3.4 to
evaluate the desired nth moment. In the range n � .logT /1=.2K/ the error term in
Lemma 3.4 is easily seen to be� exp.�.logT /1=.3K//. When n is odd there is no
main term, completing the proof of this case.

When n is even, the main term from Lemma 3.4 arises as the nth derivative (at
´ D 0) ofY

p

I0
�p
a.p/a?.p/´

�
D

Y
p

�
1C

a.p/a?.p/´2

4
C gp.´/´

4

�
for gp.´/ an analytic function in a neighborhood of 0with gp.´/� ja.p/a?.p/j2.
Since a.p/a?.p/ D

˚
�2j C �

0
j
2
C 2�j �

0
j cos.� logp/

	
p�2�0 for p 2 Jj , we may

expand the product above asY
p

I0.
p
a.p/a?.p/´/ D

exp
�
´2

2

�
1

2

X
j

X
p2Jj

p�2�0f�2j C �
0
j
2
C 2�j �

0
j cos.� logp/g

��
FX .´/

for FX .´/, a function that is analytic in a neighborhood of 0, satisfies FX .0/ D 1,
and has derivatives at 0 that are uniformly bounded by

K�3X
jD1

X
p2Jj

ja.p/a?.p/j2 � .logT /
1
8K

K�3X
jD1

X
p2Jj

p�2

� .logT /
1
8K exp.�.logT /

1
K /:

The claim (5.1) follows from Lemma 3.4 by taking the nth derivative (note that
the exponential term is exactly the moment generating function of a Gaussian)
and noting that the terms involving a derivative of FX .´/ contribute at most �
exp.�.logT /1=.3K//. �

We shall use Proposition 5.1 to compute the Fourier-Laplace transform of Pj .t/
and Pj .t C �/ in wide ranges. Since these transforms can be dominated by rare
extremely large values of Pj .t/, it is necessary to introduce a cutoff. With this in
mind, we introduce the set

(5.5) B D fT � t � 2T W jPj .t/j � .logT /
1
4K for all 1 � j � K � 3g:

LEMMA 5.2. With B as defined in (5.5),

(5.6) P .Bc/� exp
�
�
.logT /1=.2K/

log logT

�
:
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PROOF. By Chebyshev’s inequality and Proposition 5.1 we see that for any even
n � .logT /1=.2K/

P .jPj .t/j � .logT /
1
4K / � .logT /�

n
4KEŒjPj .t/j

n�� .logT /�
n
4K

�
n

e
s2j

�n=2
:

Taking n to be an even integer approximately 2K.logT /1=.2K/= log logT , we see
that this probability is� exp.�.logT /1=.2K/= log logT /. The union bound gives

P .Bc/ �
K�3X
jD1

P .jPj .t/j > .logT /
1
4K /;

and since K is fixed, the lemma follows. �

Given a real number j� j � 1, let

B.�/ D fT � t � 2T W Pj .t C �/ � .logT /
1
4K for all 1 � j � K � 3g:

Thus B.�/ is essentially a translate of the set B D B.0/, and the bound of Lemma
5.2 applies to P .B.�/c/ as well. On B and B.�/, we can derive precise bounds for
the Fourier-Laplace transforms of the Pj ’s for two points.

PROPOSITION 5.3. For 1 � j � K�3 let �j and � 0j denote complex numbers with
j�j j; j�

0
j j � .logT /1=16K . Then

E

�
exp

�K�3X
jD1

�jPj .t/

�
1B
�
D exp

�
1

2

K�3X
jD1

�2j s
2
j

�
C O

�
exp.�.logT /

1
4K /

�
:

(5.7)

Further, for any real number � with j� j � 1 we have

(5.8) E

�
exp

�K�3X
jD1

�jPj .t/C �
0
jPj .t C �//

�
1B\B.�/

�
D

exp
�
1

2

K�3X
jD1

˚
s2j
�
�2j C �

02
j

�
C 2�j .�/�j �

0
j

	�
C O.exp.�.logT /

1
4K //:

PROOF. We prove the two-point estimate (5.8); the proof of the one-point esti-
mate (5.7) is similar (and simpler). The approach is similar to the proof of Lemma
4.5, approximating the exponential using many terms in the Taylor expansion and
then invoking the Gaussian moments established in Proposition 5.1.

We begin with the following simple observation: if ´ is a complex number and
n is a natural number � 10.j´j C 1/, then

(5.9)
ˇ̌̌̌
e´ �

nX
jD0

´j

j Š

ˇ̌̌̌
�

1X
jDnC1

j´jj

j Š
�
j´jn

nŠ
� e�n:
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For brevity, write Pj for Pj .t/ and P 0j for Pj .tC �/, and similarly put B 0 D B.�/.
On the set B \ B 0 we haveˇ̌̌̌K�3X

jD1

.�jPj C �
0
jP
0
j /

ˇ̌̌̌
� 2.K � 3/.logT /

1
4K
C 1
16K < .logT /

1
3K � 1:

Therefore, using (5.9), with N D 10.logT /1=3K we obtain

(5.10) E
h

exp
�X
j

�jPj C �
0
jP
0
j

�
1B\B 0

i
D

X
n�N

1

nŠ
E
h�X

j

�jPj C �
0
jP
0
j

�n
1B\B 0

i
C O

�
exp

�
�.logT /

1
3K

��
:

Now we show that the moments restricted to B \ B 0 appearing in (5.10) are
very nearly the unrestricted moments for which we can use Proposition 5.1. The
Cauchy-Schwarz inequality gives

1

nŠ
E
h�X

j

�jPj C �
0
jP
0
j

�n
1.B\B 0/c

i
�

1

nŠ
E
h�X

j

�jPj C �
0
jP
0
j

�2ni 1
2
� .2P .Bc//

1
2 :

Using Proposition 5.1 (together with the bounds on j�jj , j� 0j j, and s2j ) and Lemma
5.2, the above is

� .logT /n exp
�
�
.logT /1=.2K/

2 log logT

�
� exp

�
�.logT /

1
3K

�
:

Therefore for n � N we have
1

nŠ
E
h�X

j

�jPj C �
0
jP
0
j

�n
1B\B 0

i
D
1

nŠ
E
h�X

j

�jPj C �
0
jP
0
j

�ni
C O

�
exp

�
�.logT /

1
3K

��
:

(5.11)

Now we use Proposition 5.1 to evaluate the unrestricted moments in (5.11).
When n � N is odd, there is no main term, and the quantity in (5.11) is bounded
by � exp.�.logT /1=.3K//. When n D 2m � N is even, then Proposition 5.1
gives

1

.2m/Š
E
h�X

j

�jPj C �
0
jP
0
j

�2mi
D

1

2mmŠ

�X
j

˚
s2j
�
�2j C �

0
j
2�
C 2�j .�/�j �

0
j

	�m
C O

�
exp

�
�.logT /

1
3K

��
:
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By inserting this into (5.11) and then into (5.10), it follows that

(5.12)

E
h
exp

�X
j

�jPj C �
0
jP
0
j

�
1B\B 0

i
D

X
m�N=2

1

2mmŠ

�X
j

˚
s2j
�
�2j C �

0
j
2�
C 2�j .�/�j �

0
j

	�m
C O

�
exp

�
�.logT /

1
4K

��
:

Since j�j j and j� 0j j are bounded by .logT /1=.16K/, an application of (5.9) shows
that the above equals

exp
�
1

2

X
j

˚
s2j
�
�2j C �

02
j

�
C 2�j .�/�j �

0
j

	�
C O

�
exp

�
�.logT /

1
4K

��
;

completing the proof. �

5.2 Large-Deviation Estimates
Proposition 5.3 can be used to get precise large-deviation estimates on the vari-

ables Pj . For xj (with 1 � j � K � 3) to be fixed later, and � a real number with
j� j � 1, define the events

(5.13) A.�/ D fT � t � 2T W Pj .t C �/ > xj for all 1 � j � K � 3g:

We will abbreviate A.0/ as A, and note that (away from a bounded distance of the
endpoints T and 2T ) the set A.�/ is just a translate of the set A. We wish to obtain
bounds for P .A/ and P .A \ A.�//.

PROPOSITION 5.4. Let j� j � 1 be a real number, and let 0 � m � K � 3 denote
the largest integer in this range with j� j � .logT /�m=K . Then, for any choice of
parameters 0 < xj � log logT (with 1 � j � K � 3), we have

(5.14) P .A \ A.�//� exp
�
�

mX
jD1

x2j

2s2j
�

K�3X
jDmC1

x2j

s2j

�
:

PROOF. For brevity, we write Pj D Pj .t/, P 0j D Pj .t C �/, B 0 D B.�/,
and A0 D A.�/. We shall bound P .A \ B \ A0 \ B 0/, and then the bound of
the proposition will follow since the complements of the sets B and B 0 have very
small measure, by Lemma 5.2.

For any choice of parameters ǰ > 0 (for 1 � j � K�3), for t in the set A\A0

we have
K�3X
jD1

ǰ .Pj C P
0
j / � 2

K�3X
jD1

ǰxj :



526 L.-P. ARGUIN ET AL.

Therefore

P .A \ B \ A0 \ B 0/ � E

�
exp

�K�3X
jD1

ǰ .Pj C P
0
j /

�
1B\B 0

�
exp

�
�2

K�3X
jD1

ǰxj

�
:

Assuming that ǰ � .logT /1=.16K for all j , from (5.8) this is

� exp
�
1

2

K�3X
jD1

2ˇ2j
�
s2j C �j .�/

�
� 2

K�3X
jD1

ǰxj

�
:

If 0 � m � K � 3 denotes the largest integer with j� j � 2.logT /�m=K , then for
1 � j � m we have the trivial bound �j .�/ � s2j , and for K � 3 � j � mC 1 we
have by (5.3) that �j .�/ D O.1/. Therefore our bound above is

� exp
�
1

2

mX
jD1

4ˇ2j s
2
j C

1

2

K�3X
jDmC1

�
2ˇ2j s

2
j C O

�
ˇ2j
��
� 2

K�3X
jD1

ǰxj

�
:

By setting ǰ D xj =s
2
j for j � mC 1 and ǰ D xj =.2s

2
j / for j � m we obtain

(5.14). �

When j� j � .logT /�1=.2K/, the crude bound of Proposition 5.4 will be suffi-
cient, but when j� j is larger (almost of macroscopic size) we will require more pre-
cise large-deviation bounds. These can be obtained by doing a change of measure
under which the value xj is typical for Pj , and by applying a Berry-Esseen-type
bound. This approach was taken in [2]. We use a different approach here by di-
rectly inverting the Fourier transform. To state the results cleanly, it is convenient
to set

(5.15) ‰.x/ D
1
p
2�

Z 1
x

e�y
2=2 dy;

which is the probability of a standard normal random variable being larger than x.

PROPOSITION 5.5. For all choices of 0 < xj � log logT (with 1 � j � K � 3)
we have

(5.16) P .A/ D .1C o.1//
K�3Y
jD1

‰.xj =sj /:

Moreover, if 1 � j� j � .logT /�1=.2K/, then

(5.17) P .A \ A.�// D .1C o.1// P .A/ P .A.�// D .1C o.1//P .A/2:

PROOF. The proof is based on inverting the Fourier-Laplace transform and us-
ing the work in Proposition 5.3. We begin with a simple, but useful, contour inte-
gral. Let x be a real number, and c be positive. Then

1

2�i

Z cCi1

c�i1

exw

w2
dw D

(
x if x � 0;
0 if x � 0:
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This may be proved by shifting the contour to the right for x � 0, and to the left
(picking up the contribution of the pole at w D 0) when x > 0. Now let ı be a
positive real number. Applying the identity above twice we find

(5.18)
1

2�i

Z cCi1

c�i1

exw
eıw � 1

ıw

dw
w
D

8̂<̂
:
1 if x � 0;
.ı C x/=ı if � ı � x � 0;
0 if x � �ı:

Call the function on the right side above gı.x/, which plainly approximates the
indicator function of the positive reals: 1x�0 � gı.x/ � 1xCı�0.

We use the same notation Pj , P 0j , A, A0, B , B 0 as in Proposition 5.4. We start
with the one-point bound (5.16). Since the measure of Bc is negligible, it suffices
to evaluate P .A \ B/. We take ı D .logT /�1=.64K

2/, and from the definition of
gı we see that

(5.19)

P .A \ B/ � E
hY
j

gı.Pj � xj /1B
i

D
1

.2�i/K�3

Z
wj ;Re.wj /D ǰ

E
h

exp
�X
j

wj .Pj � xj /
�

1B
i

�

Y
j

�
eıwj � 1

ıwj

�
dwj
wj

;

where we have a .K�3/-fold integral with the variables wj lying on the lines with
Re.wj / D ǰ with ǰ D xj =s

2
j . Note that 1= log logT � ǰ � .log logT /=s2j D

O.1/.
To evaluate the integral above, we draw on our work in Proposition 5.3, which

will apply when all the jwj j are bounded by .logT /1=.16K/. We first bound the
contribution from terms where some jwj j is larger than .logT /1=.16K/. Sinceˇ̌̌

E
h

exp
�X
j

wj .Pj � xj /
�

1B
iˇ̌̌

� E
h

exp
�X
j

ǰ .Pj � xj /
�

1B
i

� exp
�X

j

�
ˇ2j s

2
j

2
� ǰxj

��
D exp

�
�

X
j

x2j

2s2j

�
;
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such terms contribute (assuming that jw1j > .logT /1=.16K/, the other cases being
similar)

�

Z
Re.wj /D ǰ

jw1j�.logT /1=.16K/

exp
�
�

X
j

x2j

2s2j

�Y
j

1

ıjwj j2
jdwj j

� exp
�
�

X
j

x2j

2s2j

�Y
j

1

ı ǰ
.logT /�

1
16K :

Recalling that ı D .logT /�1=.64K
2/, a small calculation using

‰.x/� e�x
2=2=.1C x/ for all x � 0

shows that the above is

(5.20) � .logT /�
1
32K

Y
j

‰.xj =sj /:

Now we turn to the portion of the integral in (5.19) where all the variables wj
are bounded in size by .logT /1=.16K/. Here we use (5.7) and obtain

1

.2�i/K�3

Z
wj ;Re.wj /D ǰ

jwj j�.logT /1=.16K/

�
exp

�X
j

�
w2j s

2
j

2
� wjxj

��

C O
�
exp

�
�.logT /

1
4K

���

�

Y
j

�
eıwj � 1

ıwj

�
dwj
wj

:

The error term above contributes � exp.�.logT /1=.4K//
Q
j 1=.ı ǰ /, which is

much smaller than (5.20). In the main term above we extend the integrals to all
ranges of wj , incurring an error bounded again by (5.20). We are left to handle

1

.2�i/K�3

Z
wj ;Re.wj /D ǰ

exp
�X

j

�
w2j s

2
j

2
� wjxj

��

�

Y
j

�
eıwj � 1

ıwj

�
dwj
wj

:

(5.21)
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If Xj denotes a Gaussian random variable with mean 0 and variance s2j , chosen
independently for different j , then this integral equals

1

.2�i/K�3

Z
wj ;Re.wj /D ǰ

E
h

exp
�X
j

wj .Xj � xj /
�iY

j

�
eıwj � 1

ıwj

�
dwj
wj

D E
hY
j

gı.Xj � xj /
i

�

Y
j

‰

�
xj

sj
� ı

�
D .1C O.ı1=2//

Y
j

‰

�
xj

sj

�
:

Putting together our analysis, we conclude that

P .A \ B/ � .1C o.1//
Y
j

‰.xj =sj /;

obtaining the upper bound implicit in (5.16). The corresponding lower bound fol-
lows similarly starting with P .A \ B/ � EŒ

Q
j gı.Pj � xj � ı/1B �.

The proof of (5.17) is similar. Here we start with

(5.22)

P .A \ A0 \ B \ B 0/

� E
hY
j

gı.Pj � xj /gı.P
0
j � xj /1B\B 0

i
D

1

.2�i/2.K�3/

Z
wj ;w

0
j

Re.wj /DRe.w 0
j
/D ǰ

E
h
exp

�X
j

.wj .Pj � xj /

C w0j .P
0
j � xj //

�
1B\B 0

i

�

Y
j

�
eıwj � 1

ıwj

��
eıw

0
j � 1

ıw0j

�
dwj
wj

dw0j
w0j

:

We proceed as before, bounding the tails of the integrals where some wj or w0j
has size > .logT /1=.16K/ as we did in (5.20). For the remaining integrals with
jwj j and jw0j j � .logT /1=.16K/ we use (5.8) of Proposition 5.3. After estimating
the error terms arising here and extending the integrals over wj and w0j (exactly as
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before), we arrive, in place of (5.21), at

(5.23)

1

.2�i/2.K�3/

Z
wj ;w

0
j

Re.wj /DRe.w 0
j
/D ǰ

exp
�X

j

�
w2j s

2
j

2
� wjxj C

.w0j sj /
2

2
� w0jxj C �j .�/wjw

0
j

��

�

Y
j

�
eıwj � 1

ıwj

��
eıw

0
j � 1

ıw0j

�
dwj
wj

dw0j
w0j

:

Since j� j � .logT /�1=.2K/, from (5.4) we have �j .�/ D O..logT /�1=.2K// for
all j , and therefore the cross terms exp.�j .�/wjw0j / appearing in (5.23) make a
negligible contribution. We are then left with essentially two copies of the integrals
in (5.21), enabling us to conclude that

P .A \ A0 \ B \ B 0/ � .1C o.1//
Y
j

‰.xj =sj /
2:

As before, we can obtain the corresponding lower bound as well, completing the
proof of (5.17). �

5.3 Proof of Proposition 3.2
Divide the interval Œ�1

4
; 1
4
� into blogT c equally spaced points �` (with 1 � ` �

blogT c). Take xj D .� log logT /=K in the definition of the event A.�/, so that
Proposition 3.2 follows if we can establish that

(5.24) P
�[
`

A.�`/
�
D 1C o.1/:

Recall that A.�`/ is essentially a translate of the set A, and so by (5.15) and (5.16)
we have

(5.25) P .A.�`// D P .A/C O.1=T / D .1C o.1//
K�3Y
jD1

‰

�
xj

sj

�
:

Since s2j D .log logT /=.2K/ C O.1/, from our choice of xj and since ‰.x/ �

e�x
2=2=x for x � 1, we obtain

(5.26)

P .A.�`// D .1C o.1//
K�3Y
jD1

‰

�
�

p
2 log logT
p
K

�

�

K�3Y
jD1

.logT /��
2=K

p
log logT

D .logT /��
2.1�3=K/.log logT /�.K�3/=2:
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The Cauchy-Schwarz inequality gives�
E
hX
`

1A.�`/
i�2
D

�
E
h
1[`A.�`/

X
`

1A.�`/
i�2

� P
�[
`

A.�`/
�
E
h�X

`

1A.�`/
�2i
I

(5.27)

this may be viewed as a special case of the Paley-Zygmund inequality. Note that,
by (5.25) and (5.26),

(5.28)

�
E
hX
`

1A.�`/
i�2
D

�X
`

P .A.�`//
�2

D
�
.1C o.1//blogT cP .A/

�2
� .logT /2.1��

2C3�2=K/��

for � > 0. To establish (5.24) we now establish an upper bound for the second
factor on the right side of (5.27).

Expanding out, we have

(5.29)

E
h�X

`

1A.�`/
�2i

D

X
`;`0

P .A.�`/ \ A.�`0//

D

� X
j�`��`0 j�.logT /�1=.2K/

C

X
j�`��`0 j�.logT /�1=.2K/

�
P .A.�`/ \ A.�`0//:

The first term accounts for the typical pair of points �`, �`0 , and by (5.17) we have
(for such a pair)

P
�
A.�`/ \ A.�`0/

�
D P

�
A \ A.�` � �`0/

�
C O.1=T /

D .1C o.1//P .A.�`//P .A.�
0
`//:

Therefore

(5.30)
X

j�`��`0 j�.logT /�1=.2K/

P
�
A.�`/ \ A.�`0/

�
� .1C o.1//

�X
`

P .A.�`//
�2
:

We now bound the second term in (5.29), using Proposition 5.4 to show that
its contribution is negligible. Let m denote the largest integer lying in Œ0;K � 3�
where j�` � �`0 j � .logT /�m=K . Then Proposition 5.4 gives (since x2j =s

2
j D

2�2.log logT /=K)

P
�
A.�`/ \ A.�`0/

�
� .logT /��

2.m=KC2.K�3�m/=K/:



532 L.-P. ARGUIN ET AL.

In the range 1 � m � K � 3, the number of pairs (�`, �`0) is� .logT /2�m=K ,
while in the case m D 0 (where we consider the case j�` � �`0 j � .logT /�1=.2K/)
the number of pairs is� .logT /2�1=.2K/. It follows thatX

j�`��`0 j�.logT /�1=.2K/

P
�
A.�`/ \ A.�`0/

�
� .logT /2�

1
2K .logT /�2�

2.1�3=K/

C

K�3X
mD1

.logT /2�m=K.logT /�2�
2.1�3=K/Cm�2=K :

Since � < 1, using (5.28) (with � there sufficiently small) we conclude that

(5.31)
X

j�`��`0 j�.logT /�1=.2K/

P
�
A.�`/ \ A.�`0/

�
D o

��X
`

P .A.�`//
�2�

:

From (5.29), (5.30), and (5.31) we conclude that

E
h�X

`

1A.�`/
�2i
� .1C o.1//

�X
`

P .A.�`//
�2
:

Inserting this upper bound in (5.27) and using (5.28), we deduce the bound (5.24),
which completes the proof of our proposition.
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